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INTRODUCCIÓN

En artículos previos de esta serie de Fundamentos de Medicina 
Basada en la Evidencia describimos los dos tipos principales de 
aprendizaje automático, supervisado y no supervisado, así 
como los parámetros y el funcionamiento general de estos 
algoritmos. En este artículo y los siguientes hablaremos de los 
algoritmos más utilizados, describiendo de forma somera su 
estructura, su funcionamiento general y sus principales venta-
jas e inconvenientes.

Comenzaremos con los algoritmos de aprendizaje supervisa-
do, que pueden utilizarse para la predicción tanto de variables 
cuantitativas (algoritmos de regresión) como cualitativas (al-
goritmos de clasificación).

REGRESIÓN LINEAL

Dentro del arsenal de métodos de estadística y de aprendi-
zaje automático, la regresión lineal es, probablemente, la más 
utilizada para comprender la relación cuantitativa entre va-
riables. Este es un algoritmo de aprendizaje supervisado de 
regresión.

En su forma más elemental, la regresión lineal simple, permite 
modelar mediante una línea recta cómo una única variable 
independiente (el predictor) influye sobre una variable de-
pendiente continua (el resultado). Podemos representar el 
modelo con la ecuación siguiente:

Y = β0 + β1 X + ε

Imaginemos un escenario clínico habitual: un investigador de-
sea cuantificar cómo el incremento en la dosis de un nuevo 
antiinflamatorio (variable X) se traduce directamente en la 
reducción de un biomarcador inflamatorio específico, como 
la proteína C reactiva (variable Y). Aquí, el modelo traza una 
línea recta que intenta predecir el valor del biomarcador  
basándose exclusivamente en la dosis administrada.

Sin embargo, la fisiología rara vez es unidimensional. Para cap-
turar la complejidad biológica de nuestros escenarios, debe-
mos extender este concepto hacia la regresión lineal múltiple. 

Esta evolución del modelo permite la inclusión simultánea de 
múltiples predictores para ajustar el resultado, lo que posibi-
lita aislar el efecto real del tratamiento controlando por  
factores de confusión, ofreciendo una visión más ajustada de 
la realidad. En este caso no se modela una recta, sino un plano 
o un hiperplano multidimensional, según el número de varia-
bles independientes o predictores que incluyamos en el mo-
delo (Figura 1).

Conceptualmente, la regresión lineal busca ajustar un modelo 
lineal a los datos. Para encontrar la “mejor” línea o plano que 
se ajusta a los datos, utiliza el método de mínimos cuadrados, 
que minimiza la suma de los errores al cuadrado entre los 
valores reales y los predichos por el modelo. Alternativamen-
te, los coeficientes del modelo pueden calcularse también 
mediante el entrenamiento utilizando métodos de optimiza-
ción, como el gradiente descendente, especialmente cuando 
el número de variables o el tamaño del conjunto de datos es 
elevado. Las métricas de error más comunes para evaluar 
este ajuste son el error cuadrático medio (MSE) y la raíz del 
error cuadrático medio (RMSE). Las métricas de desempeño 
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Figura 1. Representación de un plano de regresión 
lineal múltiple (dos variables predictoras)
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son bien conocidas, siendo las más empleadas el coeficiente 
de determinación (R2) y, con menos frecuencia, el error están-
dar de los residuos.

A diferencia de los modelos de “caja negra” del aprendizaje 
profundo, los modelos lineales son paramétricos y no requie-
ren el ajuste de hiperparámetros complejos; no obstante, la 
selección rigurosa de las variables clínicas que se incluyen en 
el modelo es una decisión crítica que determina su validez.

Interpretabilidad frente a linealidad

La gran fortaleza de la regresión lineal reside en su alta inter-
pretabilidad clínica. A diferencia de algoritmos más opacos, 
permite cuantificar exactamente cuánto influye cada factor 
(por ejemplo, “por cada kg de peso adicional, el biomarcador 
disminuye en X unidades”), lo cual es fundamental para vali-
dar el juicio clínico y fomentar la confianza en las decisiones 
terapéuticas. Además, una vez entrenado, el modelo ofrece 
una capacidad de predicción casi instantánea.

No obstante, debemos ser cautelosos con su utilización: la 
principal limitación es que este método asume que la relación 
entre los predictores y el resultado es, en efecto, lineal. Si la 
respuesta biológica es curva o exponencial, la regresión lineal 
simplificará excesivamente la realidad, introduciendo sesgo 
(Figura 2). Asimismo, aunque generalmente ágil, el proceso 
de entrenamiento puede volverse computacionalmente cos-
toso si se trabaja con conjuntos de datos masivos (Big Data 
genómico o poblacional), lo que requiere una consideración 
cuidadosa de los recursos disponibles.

Como extensión de los métodos de regresión lineal,  
podemos encontrar otras técnicas más complejas, como la 

regresión polinómica (introduce términos no lineales al mo-
delo mediante transformaciones polinómicas de una variable), 
la regresión con interacciones (incluye términos de interac-
ción para modelar el efecto combinado de dos o más varia-
bles), la regresión por componentes principales (usa análisis 
de componentes principales para reducir la dimensionalidad 
antes de la regresión) o la regresión por splines (ajusta funcio-
nes no lineales a los datos dividiendo el rango de la variable 
independiente en intervalos y ajustando polinomios de bajo 
grado en cada intervalo), entre otras.

Métodos de regularización de la regresión

En el contexto del uso de algoritmos de aprendizaje automá-
tico, es frecuente encontrarse con bases de datos donde el 
número de variables (datos genómicos, biomarcadores…) es 
muy elevado e, incluso, supera al número de registros  
del conjunto de datos. En estos casos, los modelos de regre-
sión tradicionales corren el riesgo de caer en el sobreajuste 
(overfitting): el modelo “memoriza” el ruido y las peculiarida-
des de la muestra de entrenamiento en lugar de aprender las 
relaciones biológicas reales, perdiendo así su capacidad de 
generalizar cuando se le enfrenta a datos nuevos.

Para mitigar este efecto, se recurre con frecuencia a las téc-
nicas de regularización, que introducen un “coste” o penaliza-
ción a la complejidad del modelo, haciendo que los valores de 
los coeficientes de la recta o plano de ajuste sean lo más 
bajos posible. Esto fuerza al algoritmo a priorizar solo aque-
llas relaciones que son verdaderamente fuertes y consisten-
tes, filtrando el ruido estadístico.

Existen dos tipos fundamentales de regularización

La regresión Ridge (L2) añade una penalización al método de 
los mínimos cuadrados basada en el cuadrado de los coefi-
cientes. Su efecto es el de “encoger” (shrinkage) todos los 
coeficientes hacia cero de manera proporcional, pero sin anu-
larlos por completo. Es la elección metodológica ideal cuando 
asumimos que todas las variables contribuyen al resultado, 
aunque sea mínimamente, o cuando existe alta colinealidad 
(variables muy correlacionadas entre sí, como peso y talla).

Por otra parte, la regresión Lasso (L1), a diferencia de la  
Ridge, penaliza basándose en el valor absoluto de los coefi-
cientes, con lo que puede forzar a que algunos coeficientes 
sean exactamente cero (Figura 3). En la práctica, esto actúa 
como un mecanismo de selección automática de variables, 
descartando las superfluas y produciendo modelos más sim-
ples y fáciles de interpretar.

El control de la intensidad de la penalización se realiza me-
diante el hiperparámetro lambda (λ), cuyo valor óptimo debe 
encontrarse durante el entrenamiento, habitualmente usando 

Figura 2. Ajuste lineal a datos no lineales. El modelo 
realizará predicciones inexactas
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técnicas de validación cruzada. Valores más elevados imponen una 
mayor penalización, mientras que valores próximos a cero hacen 
que el modelo se asemeje más a la regresión lineal estándar.

Estas dos técnicas pueden utilizarse de forma conjunta en lo 
que se denomina regularización en red elástica, en la que la 
intensidad de cada modalidad se regula mediante otro hiper-
parámetro denominado alfa (α).

Por último, es fundamental comprender que este principio de 
“penalizar la complejidad” trasciende la regresión lineal. Es un 
pilar transversal en el aprendizaje automático que reaparece 
en otros algoritmos, como la regresión logística o los árboles 
de decisión con métodos de ensemble. 

REGRESIÓN LOGÍSTICA

A pesar de conservar el nombre de “regresión” (una herencia 
histórica), la regresión logística es un algoritmo de aprendiza-
je supervisado de clasificación. Su función es estimar la pro-
babilidad de que una observación pertenezca a una categoría 
específica. Cuando esta variable objetivo es dicotómica habla-
mos de regresión logística binaria, que puede ser simple o 
múltiple, en función del número de variables independientes 
o predictoras. Cuando la variable objetivo tiene más de dos 
categorías, se utiliza la regresión logística multinomial.

La curva sigmoide y la máxima verosimilitud

A diferencia de la línea recta de la regresión lineal (que teóri-
camente podría extenderse hacia el infinito), la regresión lo-
gística utiliza la función sigmoide (o logística). Esta función 
transforma cualquier valor de entrada en un número estric-
tamente comprendido entre 0 y 1, dibujando una curva carac-
terística en forma de “S”.

Debido a esta no linealidad, ya no es correcto usar el método 
de mínimos cuadrados para entrenar el modelo. En su lugar, 
se recurre a la estimación de máxima verosimilitud. En térmi-
nos sencillos, el algoritmo busca iterativamente los coeficien-
tes que hacen que la probabilidad predicha para los eventos 
observados sea lo más alta posible. La función de coste que 
guía este proceso de optimización se denomina Log-loss (pér-
dida logarítmica o entropía cruzada), la cual penaliza fuerte-
mente al modelo si predice una probabilidad baja para un 
evento que sí ocurrió (o viceversa).

Métricas de desempeño

Las métricas de desempeño son conocidas en nuestro entor-
no por su utilización habitual para la valoración de las pruebas 
diagnósticas, aunque existe alguna más que es más específica 
del mundo de la ciencia de datos y el aprendizaje automático.

Las más conocidas, en las que no vamos a entrar en detalle, 
son sensibilidad y especificidad, valores predictivos positivo y 
negativo, y curva ROC con la determinación del área bajo la 
curva. Además, podemos encontrarnos otras dos métricas 
que se utilizan con frecuencia con estos algoritmos: la exacti-
tud y la puntuación F1 (F1-Score).

La exactitud es la proporción total de predicciones correc-
tas. Esta métrica debe utilizarse con precaución en el ámbi-
to de la pediatría, donde muchas patologías son poco fre-
cuentes (clases desbalanceadas). Si una enfermedad tiene 
una prevalencia muy baja, un modelo que siempre prediga 
“sano” tendrá una exactitud muy elevada, pero una utilidad 
clínica nula (tendrá poca o nula capacidad para detectar a 
los enfermos).

El F1-Score es la media armónica entre la sensibilidad y el 
valor predictivo positivo (¡ojo! en inglés, suelen denominarse 
recall y precision, respectivamente, en ciencia de datos). Fun-
ciona como un resumen del equilibrio del modelo, siendo 
especialmente útil cuando buscamos un balance entre no per-
der casos y no sobrediagnosticar. Combinada con el área bajo 
la curva ROC, puede ser muy útil en los casos de clasificación 
con categorías muy desbalanceadas.

Estas métricas de desempeño son comunes al resto de algo-
ritmos de clasificación que veremos en próximas secciones.

Figura 3. Representación gráfica de una 
regularización L1 o Lasso. En el eje de abscisas se 
muestran los valores de lambda (en escala 
logarítmica) y en el de ordenadas los valores de los 
coeficientes del modelo de regresión. Cada 
coeficiente, correspondiente a una variable 
predictora diferente, se muestra en un color diferente. 
Puede observarse como al aumentar el valor de 
lambda (la penalización), los valores de los 
coeficientes disminuyen hasta alcanzar el valor cero
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Por último, al igual que ocurría con la regresión lineal, existen 
extensiones de las técnicas de regresión logística binaria y 
multinomial, como la regresión logística regularizada (vistas al 
hablar de regresión lineal), la regresión logística con splines o 
no lineal (introduce splines o funciones base para modelar 
relaciones no lineales entre las variables), la regresión logísti-
ca penalizada bayesiana (asigna distribuciones previas sobre 
los coeficientes) y la regresión logística para datos desbalan-
ceados (reajusta los pesos de las clases y aplica técnicas de 
sobremuestreo o submuestreo, como SMOTE), entre otras.

MÁQUINAS DE VECTORES DE SOPORTE

Los dos algoritmos que hemos visto hasta ahora intentan 
minimizar el error total a toda costa. Sin embargo, en la prác-
tica clínica, a veces no necesitamos una precisión milimétrica 
en cada punto, sino un modelo que capture la tendencia ge-
neral sin distraerse por variaciones menores. En estos casos 
puede ser útil recurrir a las máquinas de vectores de soporte 
(SVM), más conocidas por su aplicación como algoritmos de 
clasificación, pero que pueden utilizarse también para regresión.

Clasificación con máquinas de vectores de soporte

Mientras que la regresión logística calcula probabilidades, las 
SVM son especialistas en geometría. Este algoritmo es un po-
tente clasificador cuyo objetivo es encontrar el “hiperplano” 
(una línea en 2D, un plano en 3D o una superficie en dimen-
siones superiores) que separe de forma óptima dos clases de 
pacientes (Figura 4).

Lo que distingue a la SVM de otros clasificadores es su bús-
queda del margen máximo. Las SVM no se conforman con 
cualquier línea que separe los grupos, sino que buscan la línea 
que pase lo más lejos posible de los elementos de ambos 
grupos o categorías. Aquí surge el concepto que da nombre 
al algoritmo: los vectores de soporte. Estos son los casos  
“límite”, los elementos cuya clasificación es más difícil porque 
sus características son ambiguas y están justo al borde de la 
frontera de decisión. Curiosamente, el algoritmo no depende 
de los casos obvios (los puntos lejanos); todo el modelo se 
construye y se define exclusivamente basándose en estos  
casos difíciles y más próximos a la frontera (Figura 5).

El “truco del kernel”: separar lo inseparable

Existen ocasiones en que los grupos no son separables me-
diante una línea recta o un hiperplano sin cometer un error 
excesivamente alto. En estos casos, en lugar de forzar una 
separación en el espacio original, el algoritmo utiliza una fun-
ción matemática (kernel) para proyectar los datos a una  
dimensión superior (3D o más). Es lo que se conoce como el 
kernel trick.

Podemos ver una analogía visual en la Figura 6. Si tenemos 
puntos rojos y verdes mezclados en una hoja de papel (2D) y 
no podemos separarlos, el kernel “levanta” los puntos rojos 
hacia arriba. Ahora, podemos deslizar una hoja de papel (un 
hiperplano) entre ellos para separarlos perfectamente. Al  
volver a mirar el papel original desde arriba, esa separación 
recta se ve como una curva compleja y no lineal.

Figura 4. Separación lineal mediante hiperplanos. Un hiperplano tiene siempre una dimensión menos que la del 
espacio en el que se representa. En un espacio bidimensional, un hiperplano es una recta, en uno 
tridimensional, es un plano de dos dimensiones. El objetivo es que todos los puntos se encuentren a uno u otro 
lado del hiperplano. En la práctica, esto suele realizarse en espacio multidimensionales, imposibles de 
representar de forma gráfica
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Ajuste y evaluación del desempeño

Los hiperparámetros más relevantes son el tipo de kernel 
(lineal, polinomial o radial) y el parámetro de regularización 
C, que decide cuánto error de clasificación estamos dispues-
tos a tolerar para mantener el margen amplio.

Para validar estos modelos en la clínica, recurriremos a las 
métricas estándar de clasificación de las que hablamos ante-
riormente.

Máquinas de vectores de soporte para regresión

Las SVM pueden utilizarse también para la predicción de va-
riables continuas. Al contrario que la regresión lineal clásica, 
que trata de minimizar cualquier desviación de la predicción, 
por mínima que sea, las SVM introducen el concepto de un 
margen de tolerancia de anchura épsilon (ε). Los errores de 
predicción que caen fuera de este rango no se penalizan. Los 
puntos que caen fuera del margen serían los equivalentes de 
los vectores de soporte de las SVM de clasificación.

Esta mecánica hace que estos algoritmos sean excepcional-
mente robustos frente a pequeños ruidos o valores atípicos 
(outliers) moderados, ya que no intentan penalizar el error de 
cada punto individual.

Figura 5. Representación gráfica de una máquina de 
vectores de soporte para clasificación en dos 
dimensiones (dos variables o características 
predictoras). Se busca un hiperplano (en este caso, 
una recta) que separe los datos de las dos categorías 
de la variable objetivo, con un margen de seguridad 
lo más amplio posible. Los puntos que definen este 
margen son los denominados vectores de soporte

Figura 6. Representación gráfica del efecto de separación de la función del kernel. Los datos no pueden 
separarse linealmente en dos dimensiones, pero sí es posible hacerlo “elevándolos” a una dimensión mayor. La 
frontera de separación en el plano ya no es una recta, sino una forma no lineal más compleja
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Los hiperparámetros más importantes para controlar el mo-
delo son el kernel, el parámetro épsilon y el parámetro C, que 
controla la penalización por salirse del margen de tolerancia. 
Un valor alto de C penaliza mucho los errores durante el 
entrenamiento (riesgo de sobreajuste), mientras que un C 
bajo permite más violaciones del margen en favor de una 
función más suave.

Ventajas e inconvenientes de las SVM

Entre las ventajas están ofrecer buenos resultados incluso 
con pequeñas cantidades de información, funcionar de forma 
adecuada con datos no estructurados y en espacios de varia-
bles de alta dimensionalidad y su capacidad para resolver pro-
blemas de clasificación complejos. Además, existen adaptacio-
nes del algoritmo para realizar clasificación multiclase, no solo 
binaria.

Sus inconvenientes son la dificultad de elección de la función 
del kernel más adecuada y su coste computacional para el 
entrenamiento cuando el conjunto de datos es muy grande.
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