December 2006. Volume 2. Number 4

Children born of infertile couples have more congenital malformations specially in those conceived after assisted reproductive technology. Teratogenic or genetic risk?

 
 
 
 
 
 
 
 
 
 
Rating: 0 (0 Votes)
Newsletter Free Subscription
Regularly recieve most recent articles by e-mail
Subscribe
Print
Add to library
Discuss this article

ED | Editorial

Author: Martínez-Frías ML1.
1Directora del Centro de Investigación sobre Anomalís Congénitas. Instituto de Salud Carlos III. Ministerio de Sanidad y Consumo. Profesora del Departamento de Farmacologí­a de la Facultad de Medicina de la Universidad Compluten. España.
Correspondence: María Luisa Martínez-Frías . Email: mlmartinez.frias@isciii.es
Publication date: 01/12/2006

How to cite this article

Martínez-Frías ML. Técnicas de reproducción asistida y defectos congénitos: ¿riesgo “teratogénico” o genético? Evid Pediatr. 2006;2:66.

ED | Editorial

Author: Martínez-Frías ML1.
1Directora del Centro de Investigación sobre Anomalís Congénitas. Instituto de Salud Carlos III. Ministerio de Sanidad y Consumo. Profesora del Departamento de Farmacologí­a de la Facultad de Medicina de la Universidad Compluten. España.
Correspondence: María Luisa Martínez-Frías . Email: mlmartinez.frias@isciii.es
Publication date: 01/12/2006

How to cite this article

Martínez-Frías ML. Técnicas de reproducción asistida y defectos congénitos: ¿riesgo “teratogénico” o genético? Evid Pediatr. 2006;2:66.

References

  1. Ericson A, Kallen B. Congenital malformations in infants born after IVF: a population-based study. Hum Reprod. 2001;16:504-9.
  2. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2000;346:725-30.
  3. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346:731-7.
  4. Maher ER, Afnan M, Barratt CL. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum Reprod. 2003;18:2508-11.
  5. Green NS. Risks of birth defects and other adverse outcomes associated with assisted reproductive technology. Pediatrics. 2004;114:256-9.
  6. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects--a systematic review. Hum Reprod. 2005;20:328-38.
  7. Maher ER. Imprinting and assisted reproductive technology. Hum Mol Genet. 2005;14: Spec No1:R133-8.
  8. Pinborg A, Loft A, Andersen A. Neonatal outcome in a Danish national cohort of 8602 children born after in vitro fertilization or intracytoplasmic sperm injection: the role of twin pregnancy. Acta Obstet Gynecol Scand. 2004;83:1071-8.
  9. Klemetti R, Gissler M, Sevon T, Koivurova S, Ritvanen A, Hemminki E. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84:1300-7.
  10. Olivennes F. Do children born after assisted reproductive technology have a higher incidence of birth defects? Fertil Steril. 2005;84:1325-6.
  11. Olson CK, Keppler-Noreuil KM, Romitti PA, Budelier WT, Ryan G, Sparks AE, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84:1308-15.
  12. Merlob P, Sapir O, Sulkes J, Fisch B. The prevalence of major congenital malformations during two periods of time, 1986-1994 and 1995-2002 in newborns conceived by assisted reproduction technology. Eur J Med Genet. 2005;48:5-11.
  13. Shiota K, Yamada S. Assisted reproductive technologies and birth defects. Congenit Anom (Kyoto). 2005;45:39-43.
  14. Van Voorhis BJ. Outcomes from assisted reproductive technology. Obstet Gynecol 2006;107:183-200.
  15. Rajesh H, Yap HA, Wu YJ. Pregnancy outcomes from in-vitro fertilisation and intracytoplasmic sperm injection: a comparison. Singapore Med J. 2006;47:309-14.
  16. Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ. 2006;333:679-81.
  17. Park SM, Mathur R, Smith GC. Congenital anomalies after treatment for infertility. BMJ. 2006;333:665-6.
  18. Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004;21:437-43.
  19. Olivennes F, Rufat P, Andre B, Pourade A, Quiros MC, Frydman R. The increased risk of complication observed in singleton pregnancies resulting from in-vitro fertilization (IVF) does not seem to be related to the IVF method itself. Hum Reprod. 1993;8:1297-300.
  20. Schuffner A, Centa L, Reggiani C, Costa S. Acral and renal malformations following ICSI. Arch Androl. 2006;52:145-8.
  21. Midrio P, Dalle Nogare C, Di Gianantonio E, Clementi M. Are congenital anorectal malformations more frequent in newborns conceived with assisted reproductive techniques? Reprod Toxicol. 2006;22:576-7.
  22. Anteby I, Cohen E, Anteby E, BenEzra D. Ocular manifestations in children born after in vitro fertilization. Arch Ophthalmol. 2001;119:1525-9.
  23. Wikstrand MH, Stromland K, Flodin S, Bergh C, Wennerholm UB, Hellstrom A. Ophthalmological findings in children born after intracytoplasmic sperm injection. Acta Ophthalmol Scand. 2006;84:177-81.
  24. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162-4.
  25. Orstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet. 2003;72:218-9.
  26. Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet. 2005;42:289-91.
  27. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156-60.
  28. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet. 2003;72:1338-41.
  29. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62-4. Erratum in: J Med Genet. 2003;40:304.
  30. Halliday J, Oke K, Breheny S, Algar E, J Amor D. Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet. 2004;75:526-8.
  31. Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril. 2005;83:349-54.
  32. Shuman C, Smith AC, Steele L, Ray PN, Clericuzio C, Zackai E, et al. Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. Am J Med Genet A. 2006;140:1497-503.
  33. Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, et al. The epigenetic imprinting defect of Beckwith-Wiedemann patients born following assisted reproductive technology is not restricted to the 11P15 region. J Med Genet. 2006 Jul 6 (pre-publicación).
  34. Engel JR, Smallwood A, Harper A, Higgins MJ, Oshimura M, Reik W, et al. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. J Med Genet. 2000;37:921-6.
  35. Cruysberg JR, Moll AC, Imhof SM. Bilateral sporadic retinoblastoma in a child born after in vitro fertilization. Arch Ophthalmol. 2002;120:1773.
  36. Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet. 2003;361:309-10.
  37. Lee I, Finger PT, Grifo JA, Rausen AR, Rebarber A, Barad DH. Retinoblastoma in a child conceived by in vitro fertilisation. Br J Ophthalmol. 2004;88:1098-9.
  38. Bradbury BD, Jick H. In vitro fertilization and childhood retinoblastoma. Br J Clin Pharmacol. 2004;58:209-11.
  39. BenEzra D. In vitro fertilization and childhood retinoblastoma. Br J Clin Pharmacol. 2005;59:724.
  40. Svensson J, Bjornstahl A, Ivarsson SA. Increased risk of Silver-Russell syndrome after in vitro fertilization? Acta Paediatr. 2005;94:1163-5.
  41. Balaguer A, Gonzalez de Dios J. Más defectos congénitos en nacidos de parejas infértiles especialmente tras técnicas de reproducción asisitida. Evid Pediatr. 2006;2:70.
  42. Khosla S, Dean W, Reik W, Feil R. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update. 2001;7:419-27.
  43. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64:918-26.
  44. Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod. 1998;3:155-63.
  45. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62:1526-35.
  46. Gosden RG. Oogenesis as a foundation for embryogenesis. Mol Cell Endocrinol. 2002;186:149-53.
  47. Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem. 2002;277:5285-9.
  48. Constancia M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms.Genome Res. 1998;8:881-900.
  49. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362-5.
  50. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet. 2004;13:839-49.
  51. Davis TL, Yang GJ, McCarrey JR, Bartolomei MS. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet. 2000;9:2885-94.
  52. Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction. 2004;127:643-51.
  53. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol. 2005;278:440-58.
  54. Dean W, Lucifero D, Santos F. DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today. 2005;75:98-111.
  55. Arnaud P, Feil R. Epigenetic deregulation of genome imprinting in human disorders and followed assisted reproduction. Birth Def Res C Embryo Today. 2005;75:81-97.
  56. Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update. 2004;10:3-18.
  57. Jacob S, Moley KH. Gametes and embryo epigenetic reprogramming affect developmental outcome: implication for assisted reproductive technologies. Pediatr Res. 2005;58:437-46.
  58. Edirisinghe WR, Murch A, Junk S, Yovich JL. Cytogenetic abnormalities of unfertilized oocytes generated from in-vitro fertilization and intracytoplasmic sperm injection: a double-blind study. Hum Reprod. 1997;12:2784-91.
  59. Voullaire L, Wilton L, McBain J, Callaghan T, Williamson R. Chromosome abnormalities identified by comparative genomic hybridization in embryos from women with repeated implantation failure. Mol Hum Reprod. 2002;8:1035-41.
  60. Allen C, Reardon W. Assisted reproduction technology and defects of genomic imprinting. BJOG. 2005;112:1589-94.
  61. Isidoro-Garcia M, Gonzalez-Sarmiento R, Cordero M, Garcia-Macias C, Corrales-Hernandez JJ, Miralles-Garcia JM. Estudio de las regiones AZF del cromosoma Y en varones con infertilidad idiopática. Comparación de dos métodos de diagnóstico molecular. Med Clin (Barc). 2005;125:731-3.
  62. Racowsky C. Effect of forskolin on the spontaneous maturation and cyclic AMP content of hamster oocyte-cumulus complexes. J Exp Zool. 1985;234:87-96.
  63. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74:599-609.
  64. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod. 2006 Aug 21. (avance de publicación)
  65. Papanikolaou EG, Camus M, Kolibianakis EM, Van Landuyt L, Van Steirteghem A, Devroey P. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med. 2006;354:1139-46.
  66. Shimokawa O, Harada N, Miyake N, Satoh K, Mizuguchi T, Niikawa N, et al. Array comparative genomic hybridization analysis in first-trimester spontaneous abortions with 'normal' karyotypes. Am J Med Genet A. 2006;140:1931-5.
  67. Ludwig M, Katalinic A. Pregnancy course and health of children born after ICSI depending on parameters of male factor infertility. Hum Reprod. 2003;18:351-7.
  68. Martinez-Frias ML. Esterilidad masculina y microdeleciones del cromosoma Y. Med Clin (Barc). 2005;125:736-9.
  69. Lee SH, Ahn SY, Lee KW, Kwack K, Jun HS, Cha KY. Intracytoplasmic sperm injection may lead to vertical transmission, expansion, and de novo occurrence of Y-chromosome microdeletions in male fetuses. Fertil Steril. 2006;85:1512-5.
  70. Allen VM, Wilson RD, Cheung A. Pregnancy outcomes after assisted reproductive technology. J Obstet Gynaecol Can. 2006;28:220-50.
  71. Mitchell AA. Infertility treatment-More risks and challenges. N Engl J Med. 2002;346:769-770.
01/12/2006

Linked Comment