March 2024. Volume 20. Number 1

Machine learning to identify febrile children at risk of Kawasaki disease

 
 
 
 
 
 
 
 
 
 
Rating: 0 (0 Votes)
Newsletter Free Subscription
Regularly recieve most recent articles by e-mail
Subscribe
Print
Add to library
Discuss this article

AVC | Critically appraised articles

Tsai CM, Lin CR, Kuo HC, Cheng FJ, Yu HR, Hung TC, et al. Use of machine learning to differentiate children with Kawasaki disease from other febrile children in a Pediatric Emergency Department. JAMA. 2023;6:e237489.

Reviewers: Molina Arias M1, Ortega Páez E2.
1Servicio de Gastroenterología Pediátrica. Hospital Infantil Universitario La Paz. Madrid. España.
2Pediatra. UGC Góngora. Distrito Granada-Metropolitano. Granada. España.
Correspondence: Manuel Molina Arias. Email: mma1961@gmail.com
Reception date: 08/11/2023
Acceptance date: 05/12/2023
Publication date: 10/01/2023

Abstract

Authors´ conclusions: the study suggests that the results of objective laboratory tests have the potential to predict Kawasaki disease. Machine learning with XGBoost can help clinicians differentiate Kawasaki disease patients from other febrile patients in pediatric emergency departments with excellent sensitivity, specificity, and accuracy.

Reviewers´ commentary: although the model presented has power to identify patients at risk of Kawasaki disease, it must be externally validated in populations more similar to ours before its use can be recommended.

How to cite this article

Molina Arias M, Ortega Páez E. Aprendizaje automático para identificar niños con fiebre con riesgo de presentar enfermedad de Kawasaki. Evid Pediatr. 2024;20:3.

AVC | Critically appraised articles

Tsai CM, Lin CR, Kuo HC, Cheng FJ, Yu HR, Hung TC, et al. Use of machine learning to differentiate children with Kawasaki disease from other febrile children in a Pediatric Emergency Department. JAMA. 2023;6:e237489.

Reviewers: Molina Arias M1, Ortega Páez E2.
1Servicio de Gastroenterología Pediátrica. Hospital Infantil Universitario La Paz. Madrid. España.
2Pediatra. UGC Góngora. Distrito Granada-Metropolitano. Granada. España.
Correspondence: Manuel Molina Arias. Email: mma1961@gmail.com
Reception date: 08/11/2023
Acceptance date: 05/12/2023
Publication date: 10/01/2023

How to cite this article

Molina Arias M, Ortega Páez E. Aprendizaje automático para identificar niños con fiebre con riesgo de presentar enfermedad de Kawasaki. Evid Pediatr. 2024;20:3.

10/01/2023

Linked Comment